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PREFACE 

This book is the second edition of a text designed for undergraduate courses in signals and 
systems. While such courses are frequently found in electrical engineering curricula, the 
concepts and techniques that form the core of the subject are of fundamental importance 
in all engineering disciplines. In fact, the scope of potential and actual applications of the 
methods of signal and system analysis continues to expand as engineers are confronted 
with ne~ challenges involving the synthesis or analysis of complex processes. For these 
reasons we feel that a course · in signals and systems not only is an essential element in 
an engineering program but also can be one of the most rewarding, exciting, and useful 
courses that engineering students take during their undergraduate education. 

Our treatment of the subject of signals and systems in this second edition maintains 
the same general philosophy as in the first edition but with significant rewriting, restructur­
ing, and additions. These changes are designed to help both the instructor in presenting the 
subject material and the student in mastering it. In the preface to the first edition we stated 
that our overall approach to signals and systems had been guided by the continuing devel­
opments in technologies for signal and system design and implementation, which made it 
increasingly important for a student to have equal familiarity with techniques suitable for 
analyzing and synthesizing both continuous-time and discrete-time systems. As we write 
the preface to this second edition, that observation and guiding principle are even more 
true than before. Thus, while students studying signals and systems should certainly have 
a solid foundation in disciplines based on the laws of physics, they must also have a firm 
grounding in the use of computers for the analysis of phenomena and the implementation 
of systems and algorithms. As a consequence, engin~ering curricula now reflect a blend of 
subjects, some involving continuous-time models and others focusing on the use of com­
puters and discrete representations. For these reasons, signals and systems courses that 
bring discrete-time and continuous-time concepts together in a unified way play an in­
creasingly important role in the education of engineering students and in their preparation 
for current and future developments in their chosen fields. 

It is with these goals in mind that we have structured this book to develop in parallel 
the methods of analysis for continuous-time and discrete-time signals and systems. This 
approach also offers a distinct and extremely iin.portant pedagogical advantage. Specifi­
cally, we are able to draw on the similarities between continuous- and discrete-time meth­
ods in order to share insights and intuition developed in each domain. Similarly, we can 
exploit the differences between them to sharpen an understanding of the distinc~ properties 
of each. 

In organizing the material both originally and now in the second edition, we have 
also considered it essential to introduce the student to some of the important uses of the 
basic methods that are developed in the book. Not only does this provide the student 
with an appreciation for the range of applications of the techniques being learned and for 
directions for further study, but it also helps to deepen understanding of the subject. To 
achieve this goal we include introductory treatments on the subjects of filtering, commu-

xvii 



xviii Preface 

nications, sampling, discrete-time processing of continuous-time signals, and feedback. In 
fact, in one of the major changes in this second edition, we have introduced the concept 
of frequency-domain filtering very early in our treatment of Fourier analysis in order to 
provide both motivation for and insight into this very important topic. In addition, we 
have again included an up-to-date bibliography at the end of the book in order to assist the 
student who is interested in pursuing additional and more advanced studies of the methods 
and applications of signal and system analysis. 

The organization of the book reflects our conviction that full mastery of a subject 
of this nature cannot be accomplished without a significant amount of practice in using 
and applying the tools that are developed. Consequently, in the second edition we have 
significantly increased the number of worked examples within each chapter. We have also 
enhanced one of the key assets of the first edition, namely the end-of-chapter homework 
problems. As in the first edition, we have included a substantial number of problems, 
totaling more than 600 in number. A majority of the problems included here are new and 
thus provide additional flexibility for the instructor in preparing homework assignments. 
In addition, in order to enhance the utility of the problems for both the student and the 
instructor we have made a number of other changes to the organization and presentation of 
the problems. In particular, we have organized the problems in each chapter under several 
specific headings, each of which spans the material ip the entire chapter but with a different 
objective. The first two sections of problems in each chapter emphasize the mechanics of 
using the basic concepts and methods presented in the chapter. For the first of these two 
sections, which has the heading Basic Problems with Answers, we have also provided 
answers (but not solutions) at the end of the book. These answers provide a simple and 
immediate way for the student to check his or her understanding of the material. The 
problems in this first section are generally appropriate for inclusion in homework sets. 
Also, in order to give the instructor additional flexibility in assigning homework problems, 
we have provided a second section of Basic Problems for which answers have not been 
included. 

A third section of problems in each chapter, organized under the heading of Ad­
vanced Problems, is oriented toward exploring and elaborating upon the foundations and 
practical implications of the material in the text. These problems often involve mathe­
matical derivations and more sophisticated use of the concepts and methods presented in 
the chapter. Some chapters also include ' a section of Extension Problems which involve 
extensions of material presented in the chapter and/or involve the use of knowledge from 
applications that are outside the scope of the main text (such as advanced circuits or me­
chanical systems). The overall variety and quantity of problems in each chapter will hope­
fully provide students with the means to develop their understanding of the material and 
instructors with considerable flexibility in putting together homework sets that are tailored 
to the specific needs of their students. A solutions manual is also available to instructors 
through the publisher. 

Another significant additional enhancement to this second edition is the availability 
of the companion book Explorations in Signals and Systems Using MATIAB by Buck, 
Daniel, and Singer. This book contains MATLAB@-based computer exercises for each 
topic in the text, and should be of great assistance to both instructor and student. 

Students using this book are assumed to have a basic background in calculus as well 
as some experience in manipulating complex numbers and some exposure to differential 
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equations. With this background, the book is self-contained. In particular, no prior expe­
rience with system analysis, convolution, Fourier analysis, or Laplace and z-transforms is 
assumed. Prior to learning the subject of signals and systems most students will have had 
a course such as basic circuit theory for electrical engineers or fundamentals of dynamics 
for mechanical engineers. Such subjects touch on some of the basic ideas that are devel­
oped more fully in this text. This background can clearly be of great value to students in 
providing additional perspective as they proceed through the book 

The Foreword, which follows this preface, is written to offer the reader motivation 
and perspective for the subject of signals and systems in general and our treatment of it 
in particular. We begin Chapter 1 by introducing some of the elementary ideas related to 
the mathematical representation of signals and systems. In particular we discuss trans­
formations (such as time shifts and scaling) of the independent variable-of a signal. We 
also introduce some of the most important and basic continuous-time and discrete-time 
signals, namely real and complex exponentials and the continuous-time and discrete-time 
unit step and unit impulse. Chapter 1 also introduces block diagram representations of in­
terconnections of systems and discusses several basic system properties such as causality, 
linearity and time-invariance. In Chapter 2 we build on these last two properties, together 
with the sifting property of unit impulses to develop the convolution -sum representation 
for discrete-time linear, time-invariant (LTI) systems and the convolution integral repre­
sentation for continuous-time LTI systems. In this treatment we use the intuition gained 
from our development of the discrete-time case as an aid in deriving and understanding its 
continuous-time counterpart. We then turn to a discussion of causal, LTI systems charac­
terized by linear constant-coefficient differential and difference equations. In this introduc-

, tory discussion we review the basic ideas involved in solving linear differential equations 
(to which most students will have had some previous exposure) and we also provide a dis­
cussion of analogous methods for linear difference equations. However, the primary focus 
of our development in Chapter 2 is not on methods of solution, since more convenient ap­
proaches are developed later using transform methods. Instead, in this first look, our intent 
is to provide the student with some appreciation for these extremely important classes of 
systems, which will be encountered often in subsequent chapters. Finally, Chapter 2 con­
eludes with a brief discussion of singularity functions-steps, impulses, doublets, and so 
forth-in the context of their role in the description and analysis of continuous-time LTI 
systems. In particular, we stress the interpretation of these signals in terms of how they 
are defined under convolution- that is, in terms of the responses of LTI systems to these 
idealized signals. 

Chapters 3 through 6 present a thorough and self-contained development of the · 
methods of Fourier analysis in both continuous and discrete time and together represent 
the most significant reorganization and revision in the second edition. In particular, as we 
indicated previously, we have introduced the concept of frequency-domain filtering at a 
much earlier point in the development in order to provide motivation for and a concrete 
application of the Fourier methods being developed. As in the first edition, we begin the 
discussions in Chapter 3 by emphasizing and illustrating the two fundamental reasons 
for the important role Fourier analysis plays in the study of signals and systems in both 
continuous and discrete time: (1) extremely broad classes of signals can be represented 
as weighted sums or integrals of complex exponentials; and (2) the response of an LTI 
system to a complex exponential input is the same exponential multiplied by a complex-
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number characteristic of the system. However, in contrast to the first edition, the focus of 
attention in Chapter 3 is on Fourier series representations for periodic signals in both con­
tinuous time and discrete time. In this way we not only introduce and examine many of the 
properties of Fourier .representations without the additional mathematical generalization 
required to obtain the Fourier transform for aperiodic signals, but we also can introduce 
the application to filtering at a very early stage in the development. In particular, tak­
ing advantage of the fact that complex exponentials are eigenfunctions of LTI systems, 
we introduce the frequency response of an LTI system and use it to discuss the concept 
of frequency-selective filtering, to introduce ideal filters, and to give several examples of 
nonideal filters described by differential and difference equations. In this way, with a min­
imum of mathematical preliminaries, we provide the student with a deeper appreciation 
for what a Fourier representation means and why it is such a useful construct. 

· Chapters 4 and 5 then build on the foundation provided by Chapter 3 as we develop 
first the continuous-time Fourier transform in Chapter 4 and, in a parallel fashion, the 
discrete-time Fourier transform in Chapter 5. In both chapters we derive the Fourier trans­
form representation of an aperiodic signal as the limit of the Fourier series for a signal 
whose period becomes arbitrarily large. This perspective emphasizes the close relationship 
between Fourier series and transforms, which we develop further in subsequent sections 
and which allows us to transfer the intuition developed for Fourier series in Chapter 3 to the 
more general context of Fourier transforms. In both chapters we have included a discus­
sion of the many important properties of Fourier transforms, with special emphasis placed 
on the convolution and multiplication properties. In particular, the convolution property 
allows us to take a second look at the topic of frequency-selective filtering, while the 
multiplication property serves as the starting point for our treatment of sampling and mod­
ulation in !ater chapters. Finally, in the last sections in Chapters 4 and 5 we use transform 
methods to determine the frequency responses ofLTI systems described by differential and 
difference equations and to provide several examples illustrating how Fourier transforms 
can be used to compute the responses for such systems. To supplement these discussions 
(and later treatments of Laplace and z-transforms) we have again included an Appendix at 
the end of the book that contains a description of the method of partial fraction expansion. 

Our treatment of Fourier analysis in these two chapters is characteristic of the par­
allel treatment we have developed. Specifically, in our discussion in Chapter 5, we are 
able to build on much of the insight developed in Chapter 4 for the continuous-time case, 
and toward the end of Chapter 5 we emphasize the complete duality in continuous-time 
and discrete-time Fourier representations. In addition, we bring the special nature of each 
domain into sharper focus by contrasting the differences between continuous- and discrete­
time Fourier analysis. 

As those familiar with the first edition will note, the lengths and scopes of Chapters 
4 and 5 in the second edition are considerably smaller than their first edition counterparts. 
This is due not only to the fact that Fourier series are now dealt with in a separate chapter 
but also to our moving several topics into Chapter 6. The result, we believe, has several 
significant benefits. First, the presentation in three shorter chapters of the basic concepts 
and results of Fourier analysis, together with the introduction of the concept of frequency­
selective filtering, should help the student in organizing his or her understanding of this 
material and in developing some intuition about the frequency domain and appreciation 
for its potential applications. Then, with Chapters 3-5 as a foundation, we can engage in 
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a more detailed look at a number of important topics and applications. In Chapter 6 we 
take a deeper look at both the time- and frequency-domain characteristics of LTI systems. 
For example, we introduce magnitude-phase and Bode plot representations for frequency 
responses and discuss the effect of frequency response phase on the time domain charac­
teristics of the output of an LTI system. In addition, we examine the time- and frequency­
domain behavior of ideal and nonideal filters and the tradeoffs between these that must be 
addressed in practice. We also take a careful look at first- and second-order systems and 
their roles as basic building blocks for more complex system synthesis and analysis in both 
continuous and discrete time. Finally, we discuss several other more complex examples 
of filters in both continuous and discrete time. These examples together with the numer­
ous other aspects of filtering explored in the problems at the end of the chapter provide 
the student with some appreciation for the richness and flavor of this important subject. 
While each of the topics in Chapter 6 was present in the first edition, we believe that by 
reorganizing and collecting them in a separate chapter following the basic development 
of Fourier analysis, we have both simplified the introduction of this important topic in 
Chapters 3-5 and presented in Chapter 6 a considerably more cohesive picture of time­
and frequency-domain issues. 

In response to suggestions and preferences expressed by many users of the first edi­
tion we have modified notation in the discussion of Fourier transforms to be more con­
sistent with notation most typically used for continuous-time and discrete-time Fourier 
transforms. Specifically, beginning with Chapter 3 we now denote the continuous-time 
Fourier transform as X(jw) and the discrete-time Fourier transform as X(ejw). As with all 
options with notation, there is not a unique best choice for the notation for Fourier trans­
forms. However, it is our feeling, and that of many of our colleagues, that the notation used 
in this edition represents the preferable choice. 

Our treatment of sampling in Chapter 7 is concerned primarily with the sampling 
theorem and its implications. However, to place this subject in perspective we begin by dis­
cussing the general concepts of representing a continuous-time signal in terms of its sam­
ples and the reconstruction of signals using interpolation. After using frequency-domain 
methods to derive the sampling theorem, we consider both the frequency and time do­
mains to provide intuition concerning the phenomenon of aliasing resulting from under­
sampling. One of the very important uses of sampling 'is in the discrete-time processing of 
continuous-time signals, a topic that we explore at some length in this chapter. Following 
this, we tum to the sampling of discrete-time signals. The basic result underlying discrete­
time sampling is developed in a manner that parallels that used in continuous time, and 
the applications of this result to problems of decimation and interpolation are described. 
Again a variety of other applications, in both continuous and discrete time, are addressed 
in the problems. 

Once again the reader acquainted with our first edition will note a change, in this case 
involving the reversal in the order of the presentation of sampling and communications. We 
have chosen to place sampling before communications in the second edition both because 
we can call on simple intuition to motivate and describe the processes of sampling and 
reconstruction from samples and also because this order of presentation then allows us 
in Chapter 8 to talk more easily about forms of communication systems that are closely 
related to sampling or rely fundamentally on using a sampled version of the signal to be 
transmitted. 
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Our treatment of communications in Chapter 8 includes an in -depth discussion of 
continuous-time sinusoidal amplitude modulation (AM), which begins with the straight­
forward application of the multiplication property to describe the effect of sinusoidal AM 
in the frequency domain and to suggest how the original modulating signal can be recov­
ered. Following this, we develop a number of additional issues and applications related 
to sinusoidal modulation, including frequency-division multiplexing and single-sideband 
modulation. Many other examples and applications are described in the problems. Several 
additional topics are covered in Chapter 8. The first of these is amplitude modulation of 
a pulse train and time-division multiplexing, which has a close connection to the ,topic of 
sampling in Chapter 7. Indeed we make this tie even more explicit and provide a look into 
the important field ·of digital communications by introducing and briefly describing the 
topics of pulse-amplitude modulation (PAM) and intersymbol interference. Finally, our 
discussion of frequency modulation (FM) provides the reader with a look at a nonlinear 
modulation problem. Although the analysis of FM systems is not as straightforward as for 
the AM case, our introductory treatment indicates how frequency-domain methods can 
be used to gain a significant amount of insight into the characteristics of FM signals and 
systems. Through these discussions and the many other aspects of modulation and com­
munications explored in the problems in this chapter we believe that the student can gain 
an appreciation both for the richness of the field of communications and for the central 
role that the tools of signals and systems analysis play in it. 

Chapters 9 and 10 treat the Laplace and z-transforms, respectively. For the most part, 
we focus on the bilateral versions of these transforms, although in the last section of each 
chapter we discuss unilateral transforms and their use in solving differential and differ­
ence equations with nonzero initial conditions. Both chapters include discussions on: the 
close relationship between these transforms and Fourier transforms; the class of rational 
transforms and their representation in terms of poles and zeros; the region of convergence 
of a Laplace or z-transform and its relationship to properties of the signal with which it is 
associated; inverse transforms using partial fraction expansion; the geometric evaluation 
of system functions and frequency responses from pole-zero plots; and basic transform 
properties. In addition, in each chapter we examine the properties and uses of system 
functions for LTI systems. Included in these discussions are the determination of system 
functions for systems characterized by differential and difference equations; the use of sys­
tem function algebra for interconnections of LTI systems; and the construction of cascade, 
parallel- and direct-form block-diagram representations for systems with rational system 
functions . 

The tools of Laplace and z-transforms form the basis for our examination of linear 
feedback systems in Chapter 11. We begin this chapter by describing a number of the 
important uses and properties of feedback systems, including stabilizing unstable systems, 
designing tracking systems, and reducing system sensitivity. In subsequent sections we use 
the tools that we have developed in previous chapters to examine three topics that are of 
importance for both continuous-time and discrete-time feedback systems. These are root 
locus analysis, Nyquist plots and the Nyquist criterion, and log-magnitude/phase plots and 
the concepts of phase and gain margins for stable feedback systems. 

The subject of signals and systems is an extraordinarily rich one, and a variety of 
approaches can be taken in designing an introductory course. It was our intention with 
the first edition and again with this second edition to provide instructors with a great deal of 
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flexibility in structuring their presentations of the subject. To obtain this flexibility and to 
maximize the usefulness of this book for instructors, we have chosen to present thorough, 
in-depth treatments of a cohesive set of topics that forms the core of most introductory 
courses on signals and systems. In achieving this depth we have of necessity omitted in­
troductions to topics such as descriptions of random signals and state space models that are 
sometimes included in first courses on signals and systems. Traditionally, at many schools, 
such topics are not included in introductory courses but rather are developed in more depth 
in follow-on undergraduate courses or in courses explicitly devoted to their investigation. 
Although we have not included an introduction to state space in the book, instructors-of 
introductory courses can easily incorporate it into the treatments of differential and dif­
ference equations that can be found throughout the book. In particular, the discussions 
in Chapters 9 and 10 on block diagram representations for systems with rational system 
functions and on unilateral transforms and their use in solving differential and difference 
equations with initial conditions form natural points of departure for the discussions of 
state-space representations. 

A typical one-semester course at the sophomore-junior level using this book would 
cover Chapters 1-5 in reasonable depth (although various topics in each chapter are easily 
omitted at the discretion of the instructor) with selected topics chosen from the remaining 
chapters. For example, one possibility is to present several of the basic topics in Chapters 
6-8 together with a treatment of Laplace and z-transforms and perhaps a brief introduction 
to the use of system function concepts to analyze feedback systems. A variety of alternate 
formats are possible, including one that incorporates an introduction to state space or one 
in which more focus is placed on continuous-time systems by de-emphasizing Chapters 5 
and 10 and the discrete-time topics in Chapters 3, 7, 8, and 11. 

In addition to these course formats this book can be used as the basic text for a 
thorough, two-semester sequence on linear systems. Alternatively, the portions of the book 
not used in a first course on signals and ~ystems can, together with other sources, form the 
basis for a subsequent course. For example, much of the material in this book forms a direct 
bridge to subjects such as state space analysis, control systems, digital signal processing, 
communications and statistical signal processing: Consequently, a follow-on course can be 
constructed that uses some of the topics in this book together with supplementary material 
in order to provide an introduction to one or more of these advanced subjects. In fact, a 
new course following this model has been developed at MIT and has proven not only to 
be a popular course among our students but also a crucial component of our signals and 
systems curriculum. 

As it was with the first edition, in the process of writing this book we have been for­
tunate to have received assistance, suggestions, and support from numerous colleagues, 
students and friends. The ideas and perspectives that form the heart of this book have 
continued to evolve as a result of our own experiences in teaching signals and systems 
and the influences of the many colleagues and students with whom we have worked. We 
would like to thank Professor Ian T. Young for his contributions to the first edition of this 
book and to thank and welcome Professor Hamid Nawab for the significant role he played 
in the development and complete restructuring of the examples and problems for this sec­
ond edition. We also express our appreciation to John Buck, Michael Daniel and Andrew 
Singer for writing the MATLAB companion to the text. In addition, we would like to 
thank Jason Oppenheim for the use of one of his original photographs and Vivian Berman 
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for her ideas and help in arriving at a cover design. Also, as indicated on the acknowl-
edgment page that follows, we are deeply grateful to the many students and colleagues 
who devoted a significant number of hours to a variety of aspects of the preparation of this 
second edition. 

We would also like to express our sincere thanks to Mr. Ray Stata and Analog De­
vices, Inc. for their generous and continued support of signal processing and this text 
through funding of the Distinguished Professor Chair in Electrical Engineering. We also 
thank M.I.T. for providing support and an invigorating environment in which to develop 
our ideas. 

The encouragement, patience, technical support, and enthusiasm provided by 
Prentice-Hall, and in particular by Marcia Horton, Tom Robbins, Don Powley, and their 
predecessors and by Ralph Pescatore of TKM ProduCtions and the production staff at 
Prentice-Hall, have been crucial in making this second edition a reality. 

Alan V. Oppenheim 
Alan S. Will sky 

Cambridge, Massachusetts 



FoREWORD 

The concepts of signals and systems arise in a wide variety of fields, and the ideas and 
techniques associated with these concepts play an important role in such diverse areas of 
science and technology as communications, aeronautics and astronautics, circuit design, 
acoustics, seismology, biomedical engineering, energy generation and distribution sys­
tems, chemical process control, and speech processing. Although the physical nature of 
the signals and systems that arise in these various disciplines may be drastically different, 
they all have two very basic features in common. The signals, which are functions of one 
or more independent variables, contain information about the behavior or nature of some 
phenomenon, whereas the systems respond to particular signals by producing other sig­
nals or some desired behavior. Voltages and currents as a function of time in an electrical 
circuit are examples of signals, and a circuit is itself an example of a system, which in this 
case responds to applied voltages and currents. As another example, when an automobile 
driver depresses the accelerator pedal, the automobile responds by increasing the speed 
of the vehicle. In this case, the system is the automobile, the pressure on the accelerator 
pedal the input to the system, and the automobile speed the response. A computer program 
for the automated diagnosis of electrocardiograms can be viewed as a system which has as 
its input a digitized electrocardiogram and which produces estimates of parameters such 
as heart rate as outputs. A camera is a system that receives light from different sources 
and reflected from objects and produces a photograph. A robot arm is a system whose 
movements are the response to control inputs. 

In the many contexts in which signals and systems arise, there are a variety of prob­
lems and questions that are of importance. In some cases, we are presented with a specific 
system and are interested in characterizing it in detail to understand how it will respond to 
various inputs. Examples include the analysis of a circuit in order to quantify its response 
to different voltage and current sources and the determination of an aircraft's response 
characteristics both to pilot commands and to wind gusts. 

In other problems of signal and system analysis, rather than analyzing existing sys­
tems, our interest may be focused on designing systems to process signals in particular 
ways. One very common context in which such problems arise is in the design of systems 
to enhance or restore signals that have been degraded in some way. For example, when 
a pilot is communicating with an air traffic control tower, the communication can be de­
graded by the high level of background noise in the cockpit. In this and many similar cases, 
it is possible to design systems that will retain the desired signal, in this case the pilot's 
voice, and reject (at least approximately) the unwanted signal, i.e., the noise. A similar 
set of objectives can also be found in the general area of image restoration and image 
enhancement. For example, images from deep space probes or earth-observing satellites 
typically represent degraded versions of the scenes being imaged because of limitations of 
the imaging equipment, atmospheric effects, and errors in signal transmission in returning 
the images to earth. Consequently, images returned from space are routinely processed 
by systems to compensate for some of these degradations. In addition, such images are usu-
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ally processed to enhance certain features , such as lines (corresponding, for example, to 
river beds or faults) or regional boundaries in which there are sharp contrasts in color or 
darkness. 

In addition to enhancement and restoration, in many applications there is a need to 
design systems to extract specific pieces of information from signals. The estimation of 
heart rate from an electrocardiogram is one example. Another arises in economic forecast­
ing. We may, for example, wish to analyze the history of an economic time series, such as 
a set of stock market averages, in order to estimate trends and other characteristics such 
as seasonal variations that may be of use in making predictions about future behavior. In 
other applications, the focus may be on the design of signals with particular properties. 
Specifically, in communications applications considerable attention is paid to designing 
signals to meet the constraints and requirements for successful transmission. For exam­
ple, long distance communication through the atmosphere requires the use of signals with 
frequencies in a particular part of the electromagnetic spectrum. The design of communi­
cation signals must also take into account the need for reliable reception in the presence 
of both distortion due to transmission through the atmosphere and interference from other 
signals being transmitted simultaneously by other users. 

Another very important class of applications in which the concepts and techniques 
of signal and system analysis arise are those in which we wish to modify or control the 

·characteristics of a given system, perhaps through the choice of specific input signals or 
by combining the system with other systems. lllustrative of this kind of application is the 
design of control systems to regulate chemical processing plants. Plants of this type are 
equipped with a variety of sensors that measure physical signals such as temperature, hu­
midity, and chemical composition. The control system in such a plant responds to these 
sensor signals by adjusting quantities such as flow rates and temperature in order to regu­
late the ongoing chemical process. The design of aircraft autopilots and computer control 
systems represents another example. In this case, signals measuring aircraft speed, alti­
tude, and heading are used by the aircraft's control system in order to adjust variables such 
as throttle setting and the position of the rudder and ailerons. These adjustments are made 
to ensure that the aircraft follows a specified course, to smooth out the aircraft's ride, and 
to enhance its responsiveness to pilot commands. In both this case and in the previous ex­
ample of chemical process control, an important concept, referred to as feedback, plays a 
major role, llS measured signals are fed back and used to adjust the response characteristics 
of a system. 

The examples in the preceding paragraphs represent only a few of an extraordinarily 
wide variety of applications for the concepts of signals and systems. The importance of 
these concepts stems not only from the diversity of phenomena and processes in which 
they arise, but also from the collection of ideas, analytical techniques, and methodologies 
that have been and are being developed and used to solve problems involving signals and 
systems. The history of this development extends back over many centuries, and although 
most of this work was motivated by specific applications, many of these ideas have proven 
to be of central importance to problems in a far larger variety of contexts. than those for 
which they were originally intended; For example, the tools of Fourier analysis, which 
form the basis for the frequency-domain analysis of signals and systems, and which we 
will develop in some detail in this book, can be traced from problems of astronomy studied 
by the ancient Babylonians to the development of mathematical physics in the eighteenth 
and nineteenth centuries. 



Foreword xxix 

In some of the examples that we have mentioned, the signals vary continuously in 
time, whereas in others, their evolution is described only at discrete points in time. For 
example, in the analysis of electrical circuits and mechanical systems we are concerned 
with signals that vary continuously. On the other hand, . the daily closing stock market 
average is by its very nature a signal that evolves at discrete points in time (i.e., at the 
close of each day). Rather than a curve as a function of a continuous variable, then, the 
closing stock market average is a sequence of numbers associated with the discrete time 
instants at which it is specified. This distinction in the basic description of the evolution of 
signals and of the systems that respond to or process these signals leads naturally to two 
parallel frameworks for signal and system analysis, one for phenomena and processes that 
are described in continuous time and one for those that are described in discrete time. 

The concepts and techniques associated both with continuous-time signals and sys­
tems and with discrete-time signals and systems have a rich history and are conceptually 
closely related. Historically, however, because their applications have in the past been suf­
ficiently different, they have for the most part been studied and developed somewhat sepa­
rately. Continuous-time signals and systems have very strong roots in problems associated 
with physics and, in the more recent past, with electrical circuits and communications. 
The techniques of discrete-time signals and systems haye strong roots in numerical analy­
sis, statistics, and time-series analysis associated with such applications as the analysis of 
economic and demographic data. Over the past several decades, however, the disciplines 
of continuous-time and discrete-time signals and systems have become increasingly en­
twined and the applications have become highly interrelated. The major impetus for this 
has come from the dramatic advances in technology for the implementation of systems 
and for the generation of signals. Specifically, the continuing development of high-speed 
digital computers, integrated circuits, and sophisticated high-density device fabrication 
techniques has made it increasingly advantageous to consider processing continuous-time 
signals by representing them by time samples (i.e., by converting them to discrete-time 
signals). As one example, the computer control system for a modern high-performance 
aircraft digitizes sensor outputs such as vehicle speed in order to produce a sequence of 
sampled measurements which are then processed by the control system. 

Because of the growing interrelationship between continuous-time signals and sys­
tems and discrete-time signals and systems and because of the close relationship among 
the concepts and techniques associated with each, we have chosen in this text to develop 
the concepts of continuous-time and discrete-time signals and systems in parallel. Since 
many of the concepts are similar (but not identical), by treating them in parallel, insight 
and intuition can be shared and both the simjlarities and differences between them become 
better focused. In addition, as will be evident as we proceed through the material, there 
are some concepts that are inherently easier to understand in one framework than the other 
and, once understood, the insight is easily transferable. Furthermore, this parallel treatment 
greatly facilitates our understanding of the very important practical context in which con­
tinuous and discrete time are brought together, namely the sampling of continuous-time 
signals and the processing of continuous-time signals using discrete-time systems. 

As we have so far described them, the notions of signals and systems are extremely 
general concepts. At this level of generality, however, only the most sweeping statements 
can be made about the nature of signals and systems, and their properties can be discussed 
only in the most elementary terms. On the other hand, an important and fundamental notion 
in dealing with signals and systems is that by carefully choosing subclasses of each with 
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particular properties that can then be exploited, we can analyze and characterize these 
signals and systems in great depth. The principal focus in this book is on the particular 
class of linear time-invariant systems. The properties of linearity and time invariance that 
define this class lead to a remarkable set of concepts and techniques which are not only of 
major practical importance but also analytically tractable and intelleCtually satisfying. 

As we have emphasized in this foreword, signal and system analysis has a long his­
tory out of which have emerged some basic techniques and fundamental principles which 
have extremely broad areas of application. Indeed, signal and system analysis is constantly 
evolving and developing in response to new problems, techniques, and opportunities. We 
fully expect this development to accelerate in pace as improved technology makes possi­
ble the implementation of increasingly complex systems and signal processing techniques. 
In the future we will see signals and systems tools and concepts applied to an expanding 
scope of applications. For these reasons, we feel that the topic of signal and system analy­
sis represents a body of knowledge that is of essential concern to the scientist and engineer. 
We have chosen the set of topics presented in this book, the organization of the presen­
tation, and the problems in each chapter in a way that we feel will most help the reader 
to obtain a solid foundation in the fundamentals of signal and system analysis; to gain an 
understanding of some of the very important and basic applications of these fundamentals 
to problems in filtering, sampling, communications, and feedback system analysis; and to 
develop some appreciation for an extremely powerful and broadly applicable approach to 
formulating and solving complex problems. 



1 
SIGNALS AND SYSTEMS 

1.0 INTRODUCTION 

As described in the Foreword, the intuitive notions of signals and systems arise in a rich va­
riety of contexts. Moreover, as we will see in this book, there is an analytical framework­
that is, a language for describing signals and systems and an extremely powerful set of tools 
for analyzing them-that applies equally well to problems in many fields . In this chapter, 
we begin our development of the analytical framework for signals and systems by intro­
ducing their mathematical description and representations. In the chapters that follow, we 

· build on this foundation in order to develop and describe additional concepts and methods 
that add considerably both to our understanding· of signals and systems and to our ability 
to analyze and solve problems involving signals and systems that arise in a broad array of 
applications. 

1.1 CONTINUOUS-TIME AND DISCRETE-TIME SIGNALS 

1 . 1 . 1 Examples and Mathematical Representation 

Signals may describe a wide variety of physical phenomena. Although signals can be rep­
resented in many ways, in all cases the information in a signal is contained in a pattern of 
variations of some form. For example, consider the simple circuit in Figure 1.1. In this case, 
the patterns of variation over time in the source and capacitor voltages, Vs and vc, are exam­
ples of signals. Similarly, as depicted in Figure 1.2, the variations over time of the applied 
force f and the resulting automobile velocity v are signals. As another example, consider 
the human vocal mechanism, which produces speech by creating fluctuations in acous­
tic pressure. Figure 1.3 is an illustration of a recording of such a speech signal, obtained by 
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Figure 1. 1 A simple RC circuit with source 
voltage Vs and capacitor voltage Vc. 

Figure 1.2 An automobile responding to an 
applied force f from the engine and to a re­
tarding frictional force pv proportional to the 
automobile's velocity v. 
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Figure 1.3 Example of a record­
ing of speech. [Adapted from Ap­
plications of Digital Signal Process­
ing, A.V. Oppenheim, ed. (Englewood 
Cliffs, N.J.: Prentice-Hall, Inc., 1978), 
p. 121 .] The signal represents acous­
tic pressure variations as a function 
of time for the spoken words "should 
we chase." The top line of the figure 
corresponds to the word "should," 
the second line to the word "we," 
and the last two lines to the word 
"chase." (We have indicated the ap­
proximate beginnings and endings 
of each successive sound in each 
word.) 

using a microphone to sense variations in acoustic pressure, which are then converted into 
an electrical signal. As can be seen in the figure, different sounds correspond to different 
patterns in the variations of acoustic pressure, and the human vocal system produces intel­
ligible speech by generating particular sequences of these patterns. Alternatively, for the 
monochromatic picture, shown in Figure .1.4, it is the pattern of variations in brightness 
across the image that is important. 
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Figure 1 .4 A monochromatic 
picture. 

3 

Signals are represented mathematically as functions of one or more independent 
variables. For example, a speech signal can be represented mathematically by acoustic 
pressure as a function of time, and a picture can be represented by brightness as a func­
tion of two spatial variables. In this book, we focus our attention on signals involving a 
single independent variable. For convenience, we will generally refer to the independent 
variable as time, although it may not in fact represent time in specific applications. For 
example, in geophysics, signals representing variations with depth of physical quantities 
such as density, porosity, and electrical resistivity are used to study the structure of the 
earth. Also, knowledge of the variations of air pressure, temperature, and wind speed with 
altitude are extremely important in meteorological investigations. Figure 1.5 depicts a typ­
ical example of annual average vertical wind profile as a function of height. The measured 
variations of wind speed with height are used in examining weather patterns, as well as 
wind conditions that may affect an aircraft during final approach and landing. 

Throughout this book we will be considering two basic types of signals: continuous­
time signals and discrete-time signals. In the case of continuous-time signals the inde­
pendent variable is continuous, and thus these signals are defined for a continuum of values 
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Figure 1.s Typical annual vertical 
wind profile. (Adapted from Crawford 
and Hudson, National Severe Storms 
Laboratory Report, ESSA ERLTM-NSSL 
48, August 1970.) 
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Figure 1.6 An example of a discrete-time signal: The weekly Dow-Jones 
stock market index from January 5, 1929, to January 4, 1930. 

of the independent variable. On the other hand, discrete-time signals are defined only at 
discrete times, and consequently, for these signals, the independent variable takes on only 
a discrete set of values. A speech signal as a function of time and atmospheric pressure 
as a function of altitude are examples of continuous-time signals. The weekly Dow-Jones 
stock market index, as illustrated in Figure 1.6, is an example of a discrete-time signal. 
Other examples of discrete-time signals can be found in demographic studies in which 
various attributes, such as average budget, crime rate, or pounds of fish caught, are tab­
ulated against such discrete variables as family size, total population, or type of fishing 
vessel, respectively. 

To distinguish between continuous-time and discrete-time signals, we will use the 
symbol t to denote the continuous-time independent variable and n to denote the discrete­
time independent variable. In addition, for continuous-time signals we will enclose the 
independent variable in parentheses ( · ), whereas for discrete-time signals we will use 
brackets [ · ] to enclose the independent variable. We will also have frequent occasions 
when it will be useful to represent signals graphically. Illustrations of a continuous-time 
signal x(t) and a discrete-time signal x[n] are shown in Figure 1. 7. It is important to note 
that the discrete-time signal x[n] is defined only.for integer values of the independent 
variable. Our choice of graphical representation for x[n] emphasizes this fact, and for 
further emphasis we will on occasion refer to x[n] as a discrete-time sequence. 

A discrete-time signal x[n] may represent a phenomenon for which the independent 
variable is inherently discrete. Signals such as demographic data are examples of this. On 
the other hand, a very important class of discrete-time signals arises from the sampling of 
continuous-time signals. In this case, the discrete-time signal x[n] represents successive 
samples of an underlying phenomenon for which the independent variable is continuous. 
Because of their speed, computational power, and flexibility, modem digital processors are 
used to implement many practical systems, ranging from digital autopilots to digital audio 
systems. Such systems require the use of discrete-time sequences representing sampled 
versions of continuous-time signals-e.g., aircraft position, velocity, and heading for an 
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Figure 1.7 Graphical representations of (a) continuous-time and (b) discrete­
time signals. 
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autopilot or speech and music for an audio system. Also, pictures in newspapers--or in this 
book, for that matter- actually consist of a very fine grid of points, and each of these points 
represents a sample of the brightness of the corresponding point in the original image. No 
matter what the source of the data, however, the si~nal x[n] is defined only for integer 
values of n. It makes no more sense to refer to the 32th sample of a digital speech signal 
than it does to refer to the average budget for a family with 2~ family members. 

Throughout most of this book we will treat discrete-time signals and continuous-time 
signals separately but in parallel, so that we can draw on insights developed in one setting 
to aid our understanding of another. In Chapter 7 we will return to the question of sampling, 
and in that context we will bring continuous-time and discrete-time concepts together in 
order to ex<imine the relationship between a continuous-time signal and a discrete-time 
signal obtained from it by sampling. 

1. 1 .2 Signal Energy and Power 

From the range of examples provided so far, we see that signals may represent a broad 
variety of phenomena. In many, but not all, applications, the signals we consider are di­
rectly related to physical quantities capturing power and energy in a physical system. For 
example, if v(t) and i(t) are, respectively, the voltage and current across a resistor with 
resistance R, then the instantaneous power is 

"p(t) = v(t)i(t) = ~v2 (t). (1.1) 
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The total energy expended over the time interval t 1 s t s t2 is 

f
12 

p(t)dt = f' 2 

.!.v2(t)dt, 
,, ,, R 

(1.2) 

and the average power over this time interval is 

- - p(1)d1 = - - - v2(1)dt. 1 ftz 1 f'2 1 
12 - t1 11 t2 - ft 11 R 

(1.3) 

Similarly, for the automobile depicted in Figure 1.2, the instantaneous power dissipated 
through friction is p(t) = bv2(t), and we can then define the total energy and average 
power over a time interval in the same way as in eqs. (1.2) and (1.3). 

With simple physical examples such as these as motivation, it is a common and 
worthwhile convention to use similar terminology for power and energy for any continuous­
time signal x(t) or any discrete-time signal x[n]. Moreover, as we will see shortly, we will 
frequently find it convenient to consider signals that take on complex values. In this case, 
the total energy over the time interval 11 s 1 s 12 in a continuous-time signal x(1) is 
defined as 

(1.4) 

where Jxl denotes the magnitude of the (possibly complex) number x. The time-averaged 
power is obtained by dividing eq. (1.4) by the length, t2 - t1, of the time interval. Simi­
larly, the total energy in a discrete-time signal x[n] over the time interval n, s n s n2 is 
defined as 

(1.5) 

and dividing by the number of points in the interval, n2 - n 1 + 1, yields the average power 
over the interval. It is important to remember that the terms "power" and "energy" are used 
here independently of whether the quantities in eqs. ( 1.4) and ( 1.5) actually are related to 
physical energy. 1 Nevertheless, we will find it convenient to use these terms in a general 
fashion. 

Furthermore, in many systems we will be interested in examining power and energy 
in signals over an infinite time interval, i.e., for - oo < 1 < + oo or for -oo < n < + oo. In 
these cases, we define the total energy as limits of eqs. (1.4) and (1.5) as the time interval 
increases without bound. That is, in continuous time, 

IT J+"' Eoo ~ }~ - T Jx(1)J
2 
dt = -oo Jx(t)J

2 
dt, (1.6) 

and in discrete time, 

+N +co 

Eoo ~ lim L Jx[n]J2 = L Jx[n]J2. 
N -+"' n= - N n= - 00 

(1.7) 

1 Even if such a relationship does exist, eqs. (1.4) and (1.5) may have the wrong dimensions and scalings. 
For example, comparing eqs. (1.2) and (1.4), we see that if x(t) represents the voltage across a resistor, then 
eq. (1 .4) must be divided by the resistance (measured, for example, in ohms) to obtain units of physical energy. 
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Note that for some signals the integral in eq. (1.6) or sum in eq. (1.7) might not converge­
e.g., if x(t) or x[n] equals a nonzero constant value for all time. Such signals have infinite 
energy, while signals with E"' < oo have finite energy. 

In an analogous fashion, we can define the time-averaged power over an infinite 
interval as 

/:; 1 IT P"' = lim 
2

T jx(t)/2 dt 
r~oo - T 

(1.8) 

and 

(1.9) 

in continuous time and discrete time, respectively. With these definitions, we can identify 
three important classes of signals. The first of these is the class of signals with finite total 
energy, i.e., those signals for which E"' < oo. Such a signal must have zero average power, 
since in the continuous time case, for example, we see from eq. ( 1.8) that 

P"' = lim E"' = 0. (1.10) 
r ~oo 2T 

An example of a finite-energy signal is a signal that takes on the value 1 for 0 :s; t :s; 1 
and 0 otherwise. In this case, E"' = 1 and Poo = 0. 

A second class of signals are those with finite average power Poo . From what we 
have just seen, if P"' > 0, then, of necessity, E"' = oo. This, of course, makes sense, since 
if there is a nonzero average energy per unit time (i.e., nonzero power), then integrating 
or summing this over an infinite time interval yields an infinite amount of energy. For 
example, the constant signal x[n] = 4 has infinite energy, but average power Poo = 16. 
There are also signals for which neither P"' nor Eoo are finite. A simple example is the 
signal x(t) = t. We will encounter other examples of signals in each of these classes in 
the remainder of this and the following chapters. 

1 .2 TRANSFORMATIONS OF: THE INDEPENDENT VARIABLE 

A central concept in signal and system analysis is that of the transformation of a signal. 
For example, in an aircraft control system, signals corresponding to the actions of the pilot 
are transformed by electrical and mechanical systems into changes in aircraft thrust or 
the positions of aircraft control surfaces such as the rudder or ailerons, which in tum are 
transformed through the dynamics and kinematics of the vehicle into changes in aircraft 
velocity and heading. Also, in a high-fidelity audio system, an input signal representing 
music as recorded on a cassette or compact disc is modified in order to enhance desirable 
characteristics, to remove recording noise, or to balance the several components of the 
signal (e.g., treble and bass). In this section, we focus on a very limited but important class 
of elementary signal transformations that involve simple modification of the independent 
variable, i.e., the time axis. As we will see in this and subsequent sections of this chapter, 
these elementary transformations allow us to introduce several basic properties of signals 
and systems. In later chapters, we will find that they also play an important role in defining 
and characte!izing far richer and important classes of systems. 
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1.2.1 Examples of Transformations of the Independent Variable 

A simple and very important example of transforming the independent variable of a signal 
is a time shift. A time shift in discrete time is illustrated in Figure 1.8, in which we have 
two signals x[n] and x[n - no] that are identical in shape, but that are displaced or shifted 
relative to each other. We will also encounter time shifts in continuous time, as illustrated 
in Figure 1.9, in which x(t - to) represents a delayed (if to is positive) or advanced (if to 
is negative) version of x(t). Signals that are related in this fashion arise in applications 
such as radar, sonar, and seismic signal processing, in which several receivers at different 
locations observe a signal being transmitted through a medium (water, rock, air, etc.). In 
this case, the difference in propagation time from the point of origin of the transmitted 
signal to any two receivers results in a time shift between the signals at the two receivers. 

A second basic transformation of the time axis is that of time reversal. For example, 
as illustrated in Figure 1.1 0, the signal x[-n] is obtained from the signal x[ n] by a reflec­
tion about n = 0 (i.e., by reversing the signal). Similarly, as depicted in Figure 1.11, the 
signal x(- t) is obtained from the signal x(t) by a reflection about t = 0. Thus, if x(t) rep­
resents an audio tape recording, then x( -t) is the same tape recording played backward. 
Another transformation is that of time scaling. In Figure 1.12 we have illustrated three 
signals, x(t), x(2t), and x(t/2), that are related by linear scale changes in the independent 
variable. If we again think of the example of x(t) as a tape recording, then x(2t) is that 
recording played at twice the speed, and x(t/2) is the recording played at half-speed. 

It is often of interest to determine the effect of transforming the independent variable 
of a given signal x(t) to obtain a signal of the form x(at + /3), where a and f3 are given 
numbers. Such a transformation of the independent variable preserves the shape of x(t), 
except that the resulting signal may be linearly stretched if Ia I < 1, linearly compressed 
if Ia I > 1, reversed in time if a < 0, and shifted in time if f3 is nonzero. This is illustrated 
in the following set of examples. 

x[n] 

x[n - no] 

0 

n 

Figure 1 .8 Discrete-time signals 
related by a time shift. In this figure 
no > 0, so that x[n - no] is a delayed 

n verson of x[n] (i.e., each point in x[n] 
occurs later in x[n- n0]). 
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x[n] 

n 

(a) 

x[- n] 

n 

(b) 
Figure 1.9 Continuous-time signals related 
by a time shift. In this figure ~ < 0, so that 
x(t - ~) is an advanced version of x(t) (i.e., 
each point in x( t) occurs at an earlier time in 
x(t - ~)) . 

Figure 1.10 (a) A discrete-time signal x[n] ; (b) its reflec­
tion x[ - n] about n = 0. 

x(t) 

(a) 

x(- t) 

(b) 

Figure 1.11 (a) A continuous-time signal x(t); (b) its 
reflection x( - t) about t = 0. 

x(t) 

~ 
x(2t) 

& 
x(t/2) 

~ 
Figure 1. 12 Continuous-time signals 
related by time scaling. 

9 
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Example 1.1 

Given the signal x(t) shown in Figure 1.13(a), the signal x(t + 1) corresponds to an 
advance (shift to the left) by one unit along the t axis as illustrated in Figure 1.13(b). 
Specifically, we note that the value of x(t) at t = to occurs in x(t + 1) at t = to - 1. For 

- 1 

-1 

'I <(t) 

0 1 2 
(a) 

0 1 

0 

(b) 

1 
(c) 

0 2/3 4/3 
(d) 

- 2/3 0 2/3 

(e) 

2 

Figure 1.13 (a) The continuous-time signal x(t) used in Examples 1.1-1.3 
to illustrate transformations of the independent variable; (b) the time-shifted 
signal x(t + 1); (c) the signal x( - t + 1) obtained by a time shift and a time 
reversal; (d) the time-scaled signal x(~t); and (e) the signal x(~t+ 1) obtained 
by time-shifting and scaling. 
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example, the value of x(t) at t = 1 is found in x(t + 1)at t = 1 - 1 = 0. Also, since 
x(t) is zero fort < 0, we have x(t + 1) zero for t < - 1. Similarly, since x(t) is zero for 
t > 2, x(t + 1) is zero fort > 1. 

Let us also consider the signal x( - t + 1), which may be obtained by replacing t 
with - tin x(t + 1). That is, x( - t + 1) is the time reversed version of x(t + 1). Thus, 
x( -t + 1) may be obtained graphically by reflecting x(t + 1) about the taxis as shown 
in Figure 1.13(c). 

Example 1.2 

Given the signal x(t), shown in Figure 1.13(a), the signal x(~t) corresponds to a linear 
compression of x(t) by a factor of~ as illustrated in Figure 1.13(d). Specifically we note 
that .the value of x(t) at t = to occurs in x(~t) at t = ~t0 • For example, the value of 
x(t) at t = 1 is found in x(~t) at t = ~ (1) = ~ -Also, since x(t) is zero fort < 0, we 
have x( ~ t) zero fort < 0. Similarly, since x(t) is zero fort > 2, x(~t) is zero fort> ~-

Example 1.3 

Suppose that we would like to determine the effect of transforming the independent vari­
able of a given signal, x(t), to obtain a signal of the form x(at + {3), where a and f3 are 
given numbers. A systematic approach to doing this is to first delay or advance x(t) in 
accordance with the value of f3 , and then to perform time scaling and/or time reversal on 
the resulting signal in accordance with the value of a. The delayed or advanced signal is 
linearlystretchedifjaj < 1, linearlycompressedifjaj > 1,andreversedintimeifa < 0. 

To illustrate this approach, let us show how x( ~t + 1) may be determined for the 
signal x(t) shown in Figure 1.13(a). Since f3 = 1, we first advance (shift to the left) x(t) 
by 1 as shown in Figure 1.13(b) .. Since jaj = ~.we may linearly compress the shifted 
signal of Figure 1.13(b) by a factor of ~ to obtain the signal shown in Figure 1.13( e). 

In addition to their use in representing physical pheQomena such as the time shift 
in a sonar signal and the speeding up or reversal of an audiotape, transformations of the 
independent variable are extremely useful in signal and system analysis. In Section 1.6 
and in Chapter 2, we will use transformations of the independent variable to introduce and 
analyze the properties of systems. These transformations are also important in defining 
and examining some important properties of signals. 

1 .2.2 Periodic Signals 

An important class of signals that we will encounter frequently throughout this book is 
the class of periodic signals. A periodic continuous-time signal x(t) has the property that 
there is a positive value of T for which 

x(t) = x(t + T) (1.11) 

for all values oft. In other words, a periodic signal has the property that it is unchanged by a 
time shift ofT. In this case, we say that x(t) is periodic with period T. Periodic continuous­
time signals arise in a variety of contexts. For example, as illustrated in Problem 2.61, 
the natural response of systems in which energy is conserved, such as ideal LC circuits 
without resistive energy dissipation and ideal mechanical systems without frictional losses, 
are periodic and, in fact, are composed of some of the basic periodic signals that we will 
introduce in Section 1.3. 
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x(t) 

... ~A&A~··· Figure 1 . 14 A continuous-time 
periodic signal. -2T - T 0 T 2T 

An example of a periodic continuous-time signal is given in Figure 1.14. From the 
figure or from eq. (1.11), we can readily deduce that if x(t) is periodic with period T, then 
x(t) = x(t + mT) for all t and for any integer m. Thus, x(t) is also periodic with period 
2T, 3T, 4T, .... The fundamental period To of x(t) is the smallest positive value ofT for 
which eq. (1.11) holds. This definition of the fundamental period works, except if x(t) is 
a constant. In this case the fundamental period is undefined, since x(t) is periodic for any 
choice ofT (so there is no smallest positive value). A signal x(t) that is not periodic will 
be referred to as an aperiodic signal. 

Periodic signals are defined analogously in discrete time. Specifically, a discrete­
time signal x[n] is periodic with period N, where N is a positive integer, if it is unchanged 
by a time shift of N, i.e., if 

x[n] = x[n + N] (1.12) 

for all values of n. If eq. (1.12) holds, then x[n] is also periodic with period 2N, 3N, . ... 
The fundamental period No is the smallest positive value of N for which eq. (1.12) holds. 
An example of a discrete-time periodic signal with fundamental period No = 3 is shown 
in Figure 1.15. 

x[n) 

Example 1.4 

Figure 1 . 1 5 A discrete-time pe-
n riodic signal with fundamental period 

No= 3. 

Let us illustrate the type of problem solving that may be required in determining whether 
or not a given signal is periodic. The signal whose periodicity we wish to check is given 
by 

( ) = { cos(t) if t < 0 
X t . () 'f 0. smt It~ 

(1.13) 

From trigonometry, we know that cos(t + 27T) = cos(t) and sin(t + 27T) = sin(t). Thus, 
considering t > 0 and t < 0 separately, we see that x(t) does repeat itself over every 
interval oflength 27T. However, as illustrated in Figure 1.16, x(t) also has a discontinuity 
at the time origin that does not recur at any other time. Since every feature in the shape of 
a periodic signal must recur periodically, we conclude that the signal x(t) is not periodic. 
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x(t) 

Figure 1.16 The signal x(t) considered in Example 1.4. 

1.2.3 Even and Odd Signals 

Another set of useful properties of signals relates to their symmetry under time reversal. 
A signal x(t) or x[n] is referred to as an even signal if it is identical to its time-reversed 
counterpart, i.e., with its reflection about the origin. In continuous time a signal is even if 

x( - t) = x(t), 

while a discrete-time signal is even if 

A signal is referred to as odd if 

x[ - n] = x[n]. 

x(-t) = -x(t), 

x[ -n] = - x[n]. 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

An odd signal must necessarily be 0 at t = 0 or n = 0, since eqs. (1.16) and (1.17) require 
that x(O) = - x(O) and x[O] = - x[O]. Examples of even and odd continuous-time signals 
are shown in Figure 1.17. 

x(t) 

(a) 

x(t) 

Figure 1 .17 (a) An even con­
tinuous-time signal; (b) an odd 
continuous-time signal. 
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x[n) = { 1, n ~ 0 
0, n < 0 

.. .'1111 
- 3 - 2 - 1 0 1 2 3 

lt. n < 0 
Sv{x[nJ} = ~,n = O 

2. n > 0 

·· · Ill }ttl··· 
-3-2 - 1 0 1 2 3 

1 

- 3 - 2-'-1 
2I r r 
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n 

n 

n Figure 1 . 18 Example of the even­
odd decomposition of a discrete-time 
signal. 

An important fact is that any signal can be broken into a sum of two signals, one of 
which is even and one of which is odd. To see this, consider the signal 

1 
Sv{ x(t)} = 2 [x(t)+x(-t)], (1.18) 

which is referred to as the even part of x(t). Similarly, the odd part of x(t) is given by 

1 
0d{x(t)} = 2[x(t)- x( -t)]. (1.19) 

It is a simple exercise to check that the even part is in fact even, that the odd part is odd, 
and that x(t) is the sum of the two. Exactly analogous definitions hold in the discrete­
time case. An example of the even-odd decomposition of a discrete-time signal is given 
in Figure 1.18. 

1 .3 EXPONENTIAL AND SINUSOIDAL SIGNALS 

In this section and the next, we introduce several basic continuous-time and discrete-time 
signals. Not only do these signals occur frequently, but they also serve as basic building 
blocks from which we can construct many other signals. 
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1.3.1 Continuous-Time Complex Exponential 
and Sinusoidal Signals 

The continuous-time complex exponential signal is of the form 

x(t) = C e0 1
, 

15 

(1.20) 

where C and a are, in general, complex numbers. Depending upon the values of these 
parameters, the complex exponential can exhibit several different characteristics. 

RealExponentialSignah 
As illustrated in Figure 1.19, if C and a are real [in which case x(t) is called a real 
exponential], there are basically two types of behavior. If a is positive, then as t in­
creases x(t) is a growing exponential, a form that is used in describing many different 
physical processes, including chain reactions in atomic explosions and complex chemical 
reactions. If a is negative, then x(t) is a decaying exponential, a signal that is also used 
to describe a wide variety of phenomena, including the process of radioactive decay and 
the responses of RC circuits and damped mechanical systems. In particular, as shown 
in Problems 2.61 and 2.62, the natural responses of the circuit in Figure 1.1 and the 
automobile in Figure 1.2 are decaying exponentials. Also, we note that for a = 0, x(t) 
is constant. 

x(t) 

(a) 

x(t) 

(b) 

Figure 1 . 19 Continuous,time real 
exponential x(t) = Ce"1: (a) a > 0; 
(b) a< 0. 
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Periodic Complex Exponential and Sinusoidal Signals 

A second important class of complex exponentials is obtained by constraining a to be 
purely imaginary. Specifically, consider 

(1.21) 

An important property of this signal is that it is periodic. To verify this, we recall from 
eq. (1.11) that x(t) will be periodic with period T if 

(1.22) 

Or, since 

it follows that for periodicity, we must have 

(1.23) 

If w0 = 0, then x(t) = 1, which is periodic for any value ofT. If wo # 0, then the fun­
damental period To of x(t)- that is, the smallest positive value ofT for which eq. (1.23) 
holds-is 

27T 
To = lwol" (1.24) 

Thus, the signals eiwot and e- Jwot have the same fundamental period. 
A signal closely related to the periodic complex exponential is the sinusoidal signal 

x(t) = A cos(wot + cp), (1.25) 

as illustrated in Figure 1.20. With seconds as the units oft, the units of cf> and w0 are radians 
and radians per second, respectively. It is also common to write w 0 = 27T fo, where fo has 
the units of cycles per second, or hertz (Hz). Like the complex exponential signal, the si­
nusoidal signal is periodic with fundamental period To given by eq. (1.24). Sinusoidal and 

x(t) = A cos (w0t + <J>) 

Figure 1 .20 Continuous-time sinu­
soidal signal. 
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complex exponential signals are also used to describe the characteristics of many physical 
processes-in particular, physical systems in which energy is conserved. For example, as 
shown in Problem 2.61, the natural response of an LC circuit is sinusoidal, as is the simple 
harmonic motion of a mechanical system consisting of a mass connected by a spring to a 
stationary support. The acoustic pressure variations corresponding to a single musical tone 
are also sinusoidal. 

By using Euler's relation,2 the complex exponential in eq. (1.21) can be written in 
terms of sinusoidal signals with the same fundamental period: 

ejwot = cos wot + j sin wot. (1.26) 

Similarly, the sinusoidal signal of eq. (1.25) can be written in terms of periodic complex 
exponentials, again with the same fundamental period: 

(1.27) 

Note that the two exponentials in eq. (1.27) have complex amplitudes. Alternatively, we 
can express a sinusoid in terms of a complex exponential signal as 

A cos(wot + lf>) = A(Jl.e{ej(wot+<f>>}, (1.28) 

where, if cis a complex number, CR.-e{c} denotes its real part. We will also use the notation 
dm{c} for the imaginary part of c, so that, for example, 

A sin(wot + l/>) = Adm{ej(wot+<f>>}. (1.29) 

From eq. (1.24), we see that the fundamental period To of a continuous-time sinu­
soidal signal or a periodic complex exponential is inversely proportional to lwol. which 
we will refer to as the fundamental frequency. From Figure 1.21, we see graphically what 
this. means. If we decrease the magnitude of w 0 , we slow down the rate of oscillation and 
therefore increase the period. Exactly the opposite effects occur if we increase the mag­
nitude of w 0 . Consider now the case w 0 = 0. In this case, as we mentioned earlier, x(t) 
is constant and therefore is periodic with period T for any positive value ofT. Thus, the 
fundamental period of a constant signal is undefined. On the other hand, there is no am­
biguity in defining the fundamental frequency of a constant signal to be zero. That is, a 
constant signal has a zero rate of oscillation. 

Periodic signals-and in particular, the complex periodic exponential signal in 
eq. (1.21) and the sinusoidal signal in eq. (1.25)-provide important examples of signals 
with infinite total energy but finite average power. For example, consider the periodic ex­
ponential signal of eq. (1.21), and suppose that we calculate the total energy and average 
power in this signal over one period: 

Eperiod = foTo iejworl2 dt 

(To 
= Jo 1 · dt = T0, 

(1.30) 

2Euler's relation and other basic ideas related to the manipulation of complex numbers and exponentials 
are considered in the mathematical review section of the problems at the end of the chapter. . 
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(a) 

(b) 

(c) 
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Figure 1.21 Relationship between 
the fundamental frequency and period 
for continuous-time sinusoidal signals; 
here, wt > w:1 > WJ, which implies 
that 71 < T2 < Ta . 

1 
P period = T 

0 
Eperiod = 1. (1.31) 

Since there are an infinite number of periods as t ranges from -oo to +oo, the total energy 
integrated over all time is infinite. However, each period of the signal looks exactly the 
same. Since the average power of the signal equals 1 over each period, averaging over 
multiple periods always yields an average power of 1. That is, the complex periodic ex-
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ponential signal has finite average power equal to 

' 1 IT . 2 P, = lim - ieJwotl dt = 1. 
T---> "" 2T - T 

(1.32) 

Problem 1.3 provides additional examples of energy and power calculations for periodic 
and aperiodic signals. · · 

Periodic complex exponentials will play a central role in much of our treatment of 
signals and systems, in part because they serve as extremely useful building blocks for 
many other signals. We will often find it useful to consider sets of harmonically related 
complex exponentials-that is, sets of periodic exponentials, all of which are periodic with 
a common period T0 • Specifically, a necessary condition for a complex exponential ejwt to 
be periodic with period To is that 

ejwTo = 1, (1.33) 

which implies that wT0 is a multiple of 21T, i.e., 

wTo = 21Tk, k = 0, ±1, ±2, . ... (1.34) 

Thus, if we define 

(1.35) 

we see that, to satisfy eq. (1.34), w must be an integer multiple of wo. That is, a harmoni­
cally related set of complex exponentials is a set of periodic exponentials with fundamental 
frequencies that are all multiples of a single positive frequency w0 : 

k = 0, ±1, ±2, .... (1.36) 

Fork = 0, cPk(t) is a constant, while for any other value of k, cPk(t) is periodic with fun ­
damental frequency I klwo and fundamental period 

21T _ To 
iklwo - Tkf" (1.37) 

The kth harmonic cPk(t) is still periodic with period To as well, as it goes through exactly 
ikl of its fundamental periods during any time interval oflength T0 • 

Our use of the term "harmonic" is consistent with its use in music, where it refers 
to tones resulting from variations in acoustic pressure at frequencies that are integer mul­
tiples of a fundamental frequency. For example, the pattern of vibrations of a string on an 

·instrument such as a violin can be described as a superposition-i.e., a weighted sum--of 
harmonically related periodic exponentials. In Chapter 3, we will see that we can build a 
very rich class of periodic signals using the harmonically related signals of eq. (1.36) as 
the building blocks. 

Example 1.5 
It is sometimes desirable to express the sum of two complex exponentials as the product 
of a single complex exponential and a single sinusoid. For example, suppose we wish to 
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plot the magnitude of the signal 

(1.38) 

To do this, we first factor out a complex exponential from the right side of eq. (1.38), 
where the frequency of this exponential factor is taken as the average of the frequencies 
of the two exponentials in the sum. Doing this, we obtain 

(1.39) 

which, because of Euler's relation, can be rewritten as 

x(t) = 2ei2-51 cos(O.St). (1.40) 

From this, we can directly obtain an expression for the magnitude of x(t): 

lx(t)l = 21 cos(O.St)l. (1.41) 

Here, we have used the fact that the magnitude of the complex exponential ei25 1 is always 
unity. Thus, lx(t)l is what is commonly referred to as a full-wave rectified sinusoid, as 
shown in Figure 1.22. 

Figure 1 .22 The full-wave rectified sinusoid of Example 1.5. 

General Complex Exponential Signals 

The most general case of a complex exponential can be expressed and interpreted in terms 
of the two cases we have examined so far: the real exponential and the periodic complex 
exponential. Specifically, consider a complex exponential C eat, where C is expressed in 
polar form and a in rectangular form. That is, 

and 

a = r + jwo. 

Then 

(1.42) 

Using Euler's relation, we can expand this further as 

ceat = ICiert cos(wot + (}) + jiCiert sin(wot + (}). (1.43) 
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Thus, for r = 0, the real and imaginary parts of a complex exponential are sinusoidal. For 
r > 0 they correspond to sinusoidal signals multiplied by a growing exponential, and for 
r < 0 they correspond to sinusoidal signals multiplied by a decaying exponential. These 
two cases are shown in Figure 1.23. The dashed lines in the figure correspond to the func­
tions ±!Clerc. From eq. (1.42), we see that !Clerc is the magnitude of the complex expo­
nential: Thus, the dashed curves act as an envelope for the oscillatory curve in the figure 
in that the peaks of the oscillations just reach these curves, and in this way the envelope 
provides us with a convenient way to visualize the general trend in the amplitude of the 
oscillations. 

x(t) 

(a) 

x(t) 

(b) 

Figure 1.23 (a) Growing sinusoidal 
signal x(t) = Cert cos (wot + 8), 
r > 0; (b) decaying sinusoid x(t) = 
cert cos (wot + 8), r < o. 

Sinusoidal signals multiplied by decaying exponentials are commonly referred to as 
damped sinusoids. Examples of damped sinusoids arise in the response of RLC circuits 
and in mechanical systems containing both damping and restoring forces, such as automo­
tive suspension systems. These kinds of systems have mechanisms that dissipate energy 
(resistors, damping forces such as friction) with oscillations that decay in time. Examples 
illustrating such systems and their damped sinusoidal natural responses can be found in 
Problems 2.61 and 2.62. 

1.3.2 Discrete-Time Complex Exponential and Sinusoidal Signals 

As in continuous time, an important signal in discrete time is the complex e;xponential 
signal or sequence, defined by 

(1.44) 
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where C and a are, in general, complex numbers. This could alternatively be expressed 
in the form 

x [n] = cef3n, (1.45) 

where 

a = ef3. 

Although the form of the discrete-time complex exponential sequence given in eq. ( 1.45) is 
more analogous to the form of the continuous-time exponential, it is often more convenient 
to express the discrete-time complex exponential sequence in the form of eq. (1.44). 

Real Exponential Signals 

If C and a are real, we can have one of several types of behavior, as illustrated in Fig­
ure 1.24.Iflal > 1 themagnitudeofthesignalgrowsexponentiallywithn, whileiflal < 1 
we have a decaying exponential. Furthermore, if a is positive, all the values of Ca" are of 
the same sign, but if a is negative then the sign of x[n] alternates. Note also that if a = 1 
then x[n] is a constant, whereas if a = - 1, x[n] alternates in value between +C and - C. 
Real-valued discrete-time exponentials are often used to describe population growth as 
a function of generation and total return on investment as a function of day, month, or 
quarter. 

Sinusoidal Signals 

Another important complex exponential is obtained by using the form given in eq. (1.45) 
and by constraining f3 to be purely imaginary (so that lal = 1). Specifically, consider 

(1.46) 

As in the continuous-time case, this signal is closely related to the sinusoidal signal 

x[n] = Acos(won + cp). . (1.47) 

If we taken to be dimensionless, then both w 0 and cp have units of radians. Three examples 
of sinusoidal sequences are shown in Figure 1.25. 

As before, Euler's relation allows us to relate complex exponentials and sinusoids: · 

ejwon = cos won+ j sin won (1.48) 

and 

(1.49) 

The signals in eqs. (1.46) and (1.47) are examples of discrete-time signals with infinite 
total energy but finite average power. For example, since lejwo"l2 = 1, every sample of 
the signal in eq. (1.46) contributes 1 to the signal's energy. Thus, the total energy for 
-oo < n < oo is infinite, while the average power per time point is obviously equal to 1. 
Other examples of energy and power calculations for discrete-time signals are given in 
Problem 1.3. 
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n 
(a) 

n 
(b) 

n 

(c) 

n 

(d) 

Figure 1 .24 The real exponential 
signal x[n] = Ca": 
(a) a > 1; (b) 0 < a < 1; 
(c) -1 < a < 0; (d) a < - 1. 
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x[n] =cos (21Tn/12) 

n 

(a) 

x[n] =cos (81Tn/31) 

n 

(b) 

x[n] = cos (n/6) 

n 

(c) 

Figure 1 .25 Discrete-time sinusoidal signals. 

General Complex Exponential Signals 

The general discrete-time complex exponential can be written and interpreted in terms of 
'real exponentials and sinusoidal signals. Specifically, if we write C and a in polar form, 
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viz., 

and 

then 

(1 .50) 

Thus, for lal = 1, the real and imaginary parts of a complex exponential sequence are 
sinusoidal. For Ia I < 1 they correspond to sinusoidal sequences multiplied by a decaying 
exponential, while for lal > 1 they correspond to sinusoidal sequences multiplied by a 
growing exponential. Examples of these signals are depicted in Figure 1.26. 

' ' 

/ 

/ 

(a) 

(b) 

' 

/ 
/ 

/ 

' ' ' 

Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying 
discrete-time sinusoid. 

n 

n 

1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials 

While there are many similarities between contim,1ous-time and discrete-time signals, 
there are also a number of important differences. One of these concerns the discrete-time 
exponential signal ejwon . In Section 1.3.1, we identified the following two properties of its 
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continuous-time counterpart ejwot: (1) the larger the magnitude of w 0 , the higher is the rate 
of oscillation in the signal; and (2) ej wot is periodic for any value of w 0 • In this section we 
d~scribe the discrete-time versions of both of these properties, and as we will see, there 
are definite differences between each of these and its continuous-time counterpart. 

The fact that the first of these properties is different in discrete time is a direct conse­
quence of another extremely important distinction between discrete-time and continuous­
time complex exponentials. Specifically, consider the discrete-time complex exponential 
with frequency wo + 21T: 

(1.51) 

From eq. (1.51), we see that the exponential at frequency w 0 + 21T is the same as that 
at frequency w 0 . Thus, we have a very different situation from the continuous-time case, 
in which the signals ejwot are all distinct for distinct values of w0 . In discrete time, these 
signals are not distinct, as the signal with frequency w 0 is identical to the signals with 
frequencies w0 ± 21T, w0 ± 41T, and so on. Therefore, in considering discrete-time com­
plex exponentials, we need only consider a frequency interval of length 21T in which to 
choose w0 . Although, according to eq. (1.51), any interval of length 21T will do, on most 
occasions we will use the interval 0 ::5 w0 < 21T or the interval - 1T ::5 w0 < 1T. 

Because of the periodicity implied by eq. (1.51), the signal ejwon does not have a 
continually increasing rate of oscillation as w0 is increased in magnitude. Rather, as il­
lustrated in Figure 1.27, as we increase w 0 from 0, we obtain signals that oscillate more 
and more rapidly until we reach w0 = 1T. As we continue to increase w0 , we decrease the 
rate of oscillation until we reach wo = 21T, which produces the same constant sequence as 
w0 = 0. Therefore, the low-frequency (that is, slowly varying) discrete-time exponentials 
have values of wo near 0, 21T, and any other even multiple of 1T, while the high frequen­
cies (corresponding to rapid variations) are located near wo = ± 1T and other odd multiples 
of 1T. Note in particular that for w 0 = 1T or any other odd multiple of 1T, 

(1.52) 

so that this signal oscillates rapidly, changing sign at each point in time [as illustrated in 
Figure 1.27(e)]. 

The second property we wish to consider concerns the periodicity of the discrete­
time complex exponential. In order for the signal ejwon to be periodic with period N > 0, 
we must have 

(1.53) 

or equivalently, 

(1.54) 

For eq. (1.54) to hold, w0N must be a multiple of 21T. That is, there must be an integer m 
such that 

or equivalently, 

woN= 21Tm, 

m 
N" 

(1.55) 

(1.56) 
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According to eq. (1.56), the signal eiwon is periodic if woi2TT is a rational number and is 
not periodic otherwise. These same observations also hold for discrete-time sinusoids. For 
example, the signals depicted in Figure 1.25(a) and (b) are periodic, while the signal in 
Figure 1.25(c) is not. 

Using the calculations that we have just made, we can also determine the funda­
mental period and frequency of discrete-time complex exponential"s, where we define the 
fundamental frequency of a discrete-time periodic signal as we did in continuous time. 
That is, if x[n] is periodic with fundamental periodN, its fundamental frequency is 2TTIN. 
Consider, then, a periodic complex exponential x[n] = eiwon with w 0 =/:- 0. As we have 
just seen, w0 must satisfy eq. (1.56) for some pair of integers m and N, with N > 0. In 
Problem 1.35, it is shown that if w 0 =/:- 0 and if Nand m have no factors in common, then 
the fundamental period of x[n] is N. Using this fact together with eq. (1.56), we find that 
the fundamental frequency of the periodic signal eiwon is 

2TT wo 
---
N m 

(1.57) 

Note that the fundamental period can also be written as 

(1.58) 

These last two expressions again differ from their continuous-time counterparts. In 
Table 1.1, we have summarized some of the differences between the continuous-time sig­
nal eiwot and the discrete-time signal eiwon. Note that, as in the continuous-time case, the 
constant discrete-time signal resulting from setting wo = 0 has a fundamental frequency 
of zero, and its fundamental period is undefined. 

TABLE 1.1 Comparison of the signals eiwot and eiwo". 

Distinct signals for distinct values of w0 

Periodic for any choice of w0 

Fundamental frequency wo 

Fundamental period 
wo = 0: undefined 
wo Y"O:~ 

wo 

Identical signals for values of w0 

separated by multiples of 27T 

Periodic only if w0 = 27Tm/N for some integers N > 0 and m. 

Fundamental frequency' w0/m 

Fundamental period' 
wo = 0: undefined 

wo Y" O:m(~) 

• Assumes that m and N do not have any factors in common. 

To gain some additional insight into these properties, let us examine again the signals 
depicted in Figure 1.25. First, consider the sequence x[n] = cos(27Tn/12), depicted in 
Figure 1.25(a), which we can think of as the set of samples of the continuous-time sinusoid 
x(t) = cos(27rtl12) at integer time points. In this case, x(t) is periodic with fundamental 
period 12 and x[n] is also periodic with fundamental period 12. That is, the values of x[n] 
repeat every 12 points, exactly in step with the fundamental period of x(t). 
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